For Enquiry: 93450 45466

Data Science Course Syllabus


Data Science Course Syllabus

The Data Science Course Syllabus covers everything you will need to learn and upskill in the field of Data Science. Let us deep dive into the components you will be learning in detail.

Introduction to Data Science

In this modules, you will explore the fundamentals of data science, including the basics of machine learning, various models and algorithms, and learn how to choose and evaluate the right model for your needs. You’ll delve into supervised and unsupervised learning techniques, time series analysis, and hypothesis testing. Through hands-on projects, you’ll gain practical experience that prepares you to implement machine learning solutions effectively.

Machine Learning Models

In this section of the Data Science Course Outline, youโ€™ll dive into the fascinating world of Machine Learning Models. Youโ€™ll discover what constitutes a machine learning model and explore various types, enabling you to make well informed choices when selecting the right one for your needs. You’ll also learn how to effectively train and evaluate your model, and uncover strategies to enhance its performance for optimal results.

  • Understand what is a Machine Learning Model
  • Various Machine Learning Models
  • Choosing the Right Model
  • Training and Evaluating the Model
  • Improving the Performance of the Model

More on Models

In this course, youโ€™ll dive into the world of predictive modeling, starting with an understanding of predictive models and how to work with linear and polynomial regression techniques. Youโ€™ll explore multi-level models and the critical process of selecting the right model for your data. Additionally, youโ€™ll learn about algorithm boosting, including its various types and a deep dive into adaptive boosting, equipping you with the skills to enhance model performance effectively.

  • Understanding Predictive Model
  • Working with Linear Regression
  • Working with Polynomial Regression
  • Understanding Multi-Level Models
  • Selecting the Right Model or Model Selection
  • Need for Selecting the Right Model
  • Understanding Algorithm Boosting
  • Various Types of Algorithm Boosting
  • Understanding Adaptive Boosting

Enquiry at FITA Academy

Understanding Machine Learning Algorithms

In this module of the Data Science Course Syllabus for Beginners, you’ll gain a comprehensive understanding of machine learning algorithms and their significance in the field. You’ll explore various types of algorithms, including supervised learning, unsupervised learning, and reinforcement learning, uncovering how each approach applies to real-world problems. By the end, you’ll be equipped with the knowledge to leverage these algorithms effectively in your projects.

  • Understanding the Machine Learning Algorithms
  • Importance of Algorithms in Machine Learning
  • Exploring different types of Machine Learning Algorithms
    • Supervised Learning
    • Unsupervised Learning
    • Reinforcement Learning

Exploring Supervised Learning Algorithms

In this module, you’ll explore supervised learning algorithms, mastering classification techniques like Logistic Regression, Naรฏve Bayes, and Support Vector Machines. You’ll also delve into Time Series Analysis, understanding its components, advantages, and models while learning to implement effective forecasting strategies.

  • Understanding the Supervised Learning Algorithm
  • Understanding Classifications
  • Working with different types of Classifications
  • Learning and Implementing Classifications
    • Logistic Regression
    • Naรฏve Bayes Classifier
    • Nearest Neighbor
    • Support Vector Machines (SVM)
    • Decision Trees
    • Boosted Trees
    • Random Forest
  • Time Series Analysis (TSA)
    • Understanding Time Series Analysis
    • Advantages of using TSA
    • Understanding various components of TSA
    • AR and MA Models
    • Understanding Stationarity
    • Implementing Forecasting using TSA

Exploring Unsupervised Learning Algorithm

In this module of the Data Science Course Outline, you’ll learn about key concepts such as clustering and dimensionality reduction. Discover how K-means and hierarchical clustering algorithms work and how to implement them effectively. You’ll also uncover the importance of dimensionality reduction techniques like Linear Discriminant Analysis and Principal Component Analysis and enhance your data analysis skills.

  • Understanding Unsupervised Learning
  • Understanding Clustering and its uses
  • Exploring K-means
    • What is K-means Clustering
    • How K-means Clustering Algorithm Works
    • Implementing K-means Clustering
  • Exploring Hierarchical Clustering
    • Understanding Hierarchical Clustering
    • Implementing Hierarchical Clustering
  • Understanding Dimensionality Reduction
    • Importance of Dimensions
    • Purpose and Advantages of Dimensionality Reduction
    • Understanding Principal Component Analysis (PCA)
    • Understanding Linear Discriminant Analysis (LDA)

Understanding Hypothesis Testing

In this Data Science Course Syllabus module, you’ll learn about hypothesis testing in machine learning, a vital technique for data-driven decision-making. You’ll explore the basics of hypotheses, including normalization methods, key parameters like null and alternative hypotheses, and the significance of the p-value. Additionally, you’ll discover various tests, such as the t-test, z-test, ANOVA test, and chi-square test, to enhance your analytical skills.

  • What is Hypothesis Testing in Machine Learning
  • Advantages of using Hypothesis Testing
  • Basics of Hypothesis
    • Normalization
    • Standard Normalization
  • Parameters of Hypothesis Testing
    • Null Hypothesis
    • Alternative Hypothesis
  • The P-Value
  • Types of Tests
    • T Test
    • Z Test
    • ANOVA Test
    • Chi-Square Test

Overview Reinforcement Learning Algorithm

In this module of the Data Science Course Outline, you will learn about Reinforcement Learning (RL) algorithms, a powerful approach in machine learning. You will discover RL’s advantages, including its ability to learn from interactions with the environments and the key components that make up these algorithms. Additionally, we’ll explore the critical concept of the exploration vs. exploitation tradeoff, which is essential for optimizing learning and decision-making in dynamic situations.

  • Understanding Reinforcement Learning Algorithm
  • Advantages of Reinforcement Learning Algorithm
  • Components of Reinforcement Learning Algorithm
  • Exploration vs. exploitation tradeoff

Hands-On Project

You’ll learn how to analyze real-world datasets, implement machine learning algorithms, and visualize your findings to drive insights. You’ll gain practical experience in data cleaning, exploratory data analysis, and model evaluation, equipping you with the skills needed to handle complex data challenges.

โ€œLearn in-depth about these concepts through the Data Science Course in Chennai.โ€

Data Science and Machine Learning with R

In this section of the Data Science Syllabus, you will discover the essentials of data science and the powerful capabilities of R programming. You will learn about machine learning algorithms, data visualization techniques, and statistical analysis, all while gaining hands-on experience with practical projects. By the end, you will be equipped to tackle real-world data challenges confidently.

Introduction to Data Science

You will start with the introduction to Data Science and will explore the fundamental concepts of the field, including the Data Science Life Cycle and the roles of Artificial Intelligence (AI) as part of the Data Science Course Syllabus. You’ll gain insights into key AI components such as Deep Learning, Machine Learning, Artificial Neural Networks (ANN), and Natural Language Processing (NLP). Additionally, you’ll discover how R connects to Machine Learning and learn to leverage R as a powerful tool for implementing Machine Learning solutions.

  • Understanding Data Science
  • The Data Science Life Cycle
  • Understanding Artificial Intelligence (AI)
  • Overview of Implementation of Artificial Intelligence
    • Machine Learning
    • Deep Learning
    • Artificial Neural Networks (ANN)
    • Natural Language Processing (NLP)
  • How R connected to Machine Learning
  • R – as a tool for Machine Learning Implementation

Introduction to R programming

In this module of the Data Scientist Course Syllabus, youโ€™ll learn about R programming, exploring its history, features, and the powerful R Studio environment. We’ll cover how to install R, set up your workspace, and navigate the command prompt. You’ll also grasp R programming syntax and how to work with R script files, providing a solid data analysis foundation.

R programming Basics

In this module, you’ll learn the essentials of R programming, including data types and variable management. You’ll explore various operators and master decision-making statements like IF and Switch. Additionally, you’ll gain hands-on experience with loopsโ€”Repeat, While, and Forโ€”and control them using Break and Next statements.

  • Data types in R
  • Creating and Managing Variables
  • Understanding Operators
    • Assignment Operators
    • Arithmetic Operators
    • Relational and Logical Operators
    • Other Operators
  • Understanding and using Decision Making Statements
    • The IF Statement
    • The IFโ€ฆELSE statement
    • Switch Statement
  • Understanding Loops and Loop Control
    • Repeat Loop
    • While Loop
    • For Loop
    • Controlling Loops with Break and Next Statements

More on Data Types

In this module of the Data Science Syllabus for Beginners, you’ll learn about key data types in R, starting with vectors, arrays, and matrices, including their creation and manipulation. You’ll explore lists and factors, understand how to work with data frames and perform operations like merging and subsetting. Finally, you’ll master converting and checking data types, giving you the skills needed for effective data analysis in R.

  • Understanding the Vector Data type
    • Introduction to Vector Data Type
    • Types of Vectors
    • Creating Vectors and Vectors with Multiple Elements
    • Accessing Vector Elements
  • Understanding Arrays in R
    • Introduction to Arrays in R
    • Creating Arrays
    • Naming the Array Rows and Columns
    • Accessing and manipulating Array Elements
  • Understanding the Matrices in R
    • Introduction to Matrices in R
    • Creating Matrices
    • Accessing Elements of Matrices
    • Performing various computations using Matrices
  • Understanding the List in R
    • Understanding and Creating List
    • Naming the Elements of a List
    • Accessing the List Elements
    • Merging different Lists
    • Manipulating the List Elements
    • Converting Lists to Vectors
  • Understanding and Working with Factors
    • Creating Factors
    • Data frame and Factors
    • Generating Factor Levels
    • Changing the Order of Levels
  • Understanding Data Frames
    • Creating Data Frames
    • Matrix Vs Data Frames
    • Sub setting data from a Data Frame
    • Manipulating Data from a Data Frame
    • Joining Columns and Rows in a Data Frame
    • Merging Data Frames
  • Converting Data Types using Various Functions
  • Checking the Data Type using Various Functions

Functions in R

In this module of the Data Scientist Course Syllabus, you’ll explore the fundamentals of functions in R, starting with a clear definition and the essential components that make them work. You’ll delve into built-in functions, including character/string, numerical, statistical, and date/time functions. Additionally, you’ll learn how to create and call user-defined functions (UDFs) and gain insights into the concept of lazy evaluation.

  • Understanding Functions in R
  • Definition of a Function and its Components
  • Understanding Built-in Functions
    • Character/String Functions
    • Numerical and Statistical Functions
    • Date and Time Functions
  • Understanding User-Defined Functions (UDF)
    • Creating a User-defined Function
    • Calling a Function
    • Understanding Lazy Evaluation of Functions

Working with External Dataย 

In this module of the Data Science Course Outline, you’ll learn how to work with external data in R, including manipulating text and CSV files. You’ll explore how to handle Excel files and use WriteBin() and ReadBin() for binary file management. Additionally, you’ll discover how to connect to and manage MySQL databases with the RMySQL package, enhancing your data-handling capabilities.

  • Understanding External Data
  • Understanding R Data Interfaces
  • Working with Text Files
  • Working with CSV Files
  • Understanding Verify and Load for Excel Files
  • Using WriteBin() and ReadBin() to manipulate Binary Files
  • Understanding the RMySQL Package to Connect and Manage MySQL

Databases

โ€œIf you are curious to learn more, join the Data Science Course in Bangaloreโ€

Data Visualization with R

In this module of the Data Science Syllabus, you’ll learn the essentials of data visualization and how to utilize R libraries for creating impactful charts and graphs. You’ll explore various types of visualizations, including pie charts, bar charts, box plots, scatter plots, histograms, and line graphs, empowering you to convey data insights effectively.

  • What is Data Visualization
  • Understanding R Libraries for Charts and Graphs
  • Using Charts and Graphs for Data Visualizations
  • Exploring Various Chart and Graph Types
    • Pie Charts and Bar Charts
    • Box Plots and Scatter Plots
    • Histograms and Line Graphs

Exploring Statistical Computations using Rย 

In this module, you’ll learn the basics of statistical analysis and its applications. You’ll explore key concepts like mean, median, and mode and dive into linear and multiple regression techniques. Additionally, you’ll understand normal and binomial distributions, as well as inferential and descriptive statistics.

  • Understanding the Basics of Statistical Analysis
  • Uses and Advantages of Statistical Analysis
  • Understanding and using Mean, Median and Mode
  • Understanding and using Linear, Multiple and Logical Regressions
  • Generating Normal and Binomial Distributions
  • Understanding Inferential Statistics
  • Understanding Descriptive Statistics and Measure of Central Tendency

Packages in R

In this module of the Data Science Syllabus, youโ€™ll learn about R packages and their importance in expanding your programming capabilities. Youโ€™ll discover how to install and load packages seamlessly, as well as manage them effectively to keep your R environment organized.

  • Understanding Packages
  • Installing and Loading Packages
  • Managing Packages

Understanding Machine Learning Models

In this module, youโ€™ll learn what a machine learning model is and explore various types available. Youโ€™ll discover how to choose the right model for your needs and gain insights into training and evaluating its performance. Finally, youโ€™ll uncover strategies to enhance your modelโ€™s accuracy.

  • Understand what is a Machine Learning Model
  • Various Machine Learning Models
  • Choosing the Right Model
  • Training and Evaluating the Model
  • Improving the Performance of the Model

More on Models

In this module of the Data Scientist Course Syllabus, you’ll learn about predictive models, including linear and polynomial regression techniques. You’ll explore the importance of model selection and delve into multi-level models. Additionally, you’ll discover algorithm boosting, its various types, and gain insights into adaptive boosting

  • Understanding Predictive Model
  • Working with Linear Regression
  • Working with Polynomial Regression
  • Understanding Multi Level Models
  • Selecting the Right Model or Model Selection
  • Need for selecting the Right Model
  • Understanding Algorithm Boosting
  • Various Types of Algorithm Boosting
  • Understanding Adaptive Boosting

Understanding Machine Learning Algorithms

  • Understanding the Machine Learning Algorithms
  • Importance of Algorithms in Machine Learning
  • Exploring different types of Machine Learning Algorithms
    • Supervised Learning
    • Unsupervised Learning
    • Reinforcement Learning

Exploring Supervised Learning Algorithms

  • Understanding the Supervised Learning Algorithm
  • Understanding Classifications
  • Working with different types of Classifications
  • Learning and Implementing Classifications
    • Logistic Regression
    • Naรฏve Bayes Classifier
    • Nearest Neighbor
    • Support Vector Machines (SVM)
    • Decision Trees
    • Boosted Trees
    • Random Forest
  • Time Series Analysis (TSA)
    • Understanding Time Series Analysis
    • Advantages of using TSA
    • Understanding various components of TSA
    • AR and MA Models
    • Understanding Stationarity
    • Implementing Forecasting using TSA

Exploring Un-Supervised Learning Algorithms

  • Understanding Unsupervised Learning
  • Understanding Clustering and its uses
  • Exploring K-means
    • What is K-means Clustering
    • How K-means Clustering Algorithm Works
    • Implementing K-means Clustering
  • Exploring Hierarchical Clustering
    • Understanding Hierarchical Clustering
    • Implementing Hierarchical Clustering
  • Understanding Dimensionality Reduction
    • Importance of Dimensions
    • Purpose and Advantages of Dimensionality Reduction
    • Understanding Principal Component Analysis (PCA)
    • Understanding Linear Discriminant Analysis (LDA)

Understanding Hypothesis Testing

  • What is Hypothesis Testing in Machine Learning
  • Advantages of using Hypothesis Testing
  • Basics of Hypothesis
    • Normalization
    • Standard Normalization
  • Parameters of Hypothesis Testing
    • Null Hypothesis
    • Alternative Hypothesis
  • The P-Value
  • Types of Tests
    • T Test
    • Z Test
  • ANOVA Test
  • Chi-Square Test

Overview Reinforcement Learning Algorithm

  • Understanding Reinforcement Learning Algorithm
  • Advantages of Reinforcement Learning Algorithm
  • Components of Reinforcement Learning Algorithm
  • Exploration Vs Exploitation tradeoff

Hands on Project

โ€œTo learn more on these topics, join the Data Science Course in Pondicherryโ€

Data Science and Machine Learning with Python

Introduction to Data Scienceย 

  • Understanding Data Science
  • The Data Science Life Cycle
  • Understanding Artificial Intelligence (AI)
  • Overview of Implementation of Artificial Intelligence
    • Machine Learning
    • Deep Learning
    • Artificial Neural Networks (ANN)
    • Natural Language Processing (NLP)
  • How Python connected to Machine Learning
  • Python as a tool for Machine Learning Implementation

Introduction to Python

Python is a versatile programming languages with a rich history. In this module of the Data Science Course Outline, you’ll explore the differences between Python 2 and 3, learn to install Python and set up your environment, and understand Python’s identifiers, keywords, and indentation. You’ll also cover comments, documentation, command line arguments, user input, and basic data types and variables.

  • What is Python and history of Python
  • Python-2 and Python-3 differences
  • Install Python and Environment Setup
  • Python Identifiers, Keywords and Indentation
  • Comments and document interlude in Python
  • Command line arguments and Getting User Input
  • Python Basic Data Types and Variables

List, Ranges and Tuples in Python

In this module of the Data Science Course Syllabus, you’ll learn to master Python lists, understanding their creation and manipulation. You’ll delve into iterators for efficient data traversal, and explore generators, comprehensions, and lambda expressions for concise coding. Additionally, you’ll gain proficiency in using ranges to handle numerical sequences effectively.

  • Understanding Lists in Python
  • Understanding Iterators
  • Generators, Comprehensions and Lambda Expressions
  • Understanding and using Ranges

Python Dictionaries and Sets

In this module, you’ll learn about Python Dictionaries and Sets, focusing on their creation, manipulation, and advanced features. You’ll explore practical examples to understand their functionality and versatility.

  • Introduction to the section
  • Python Dictionaries and More on Dictionaries
  • Sets and Python Sets Examples

Input and Output in Python

In this module of the Data Scientist Course Syllabus, you’ll learn how to read and write text files, append data to existing files, and write binary files in Python. You’ll also discover how to use the Pickle module to serialize and deserialize Python objects. By mastering these skills, you’ll be able to manage data efficiently in your Python programs.

  • Reading and writing text files
  • Appending to Files
  • Writing Binary Files Manually and using Pickle Module

Python Functions

In this module, you’ll explore the creation of user-defined functions and the power of built-in package functions in Python. You’ll learn how to use anonymous functions for concise coding, manage control flow with loops and statements, and effectively organize your code with modules and packages.

  • Python user defined functions
  • Python packages functions
  • The anonymous Functions
  • Loops and statement in Python
  • Python Modules & Packages

Python Exception Handling

In this module of the Data Science Course Syllabus, you’ll learn the fundamentals of Python exception handling, including what exceptions are and how to manage them using try, except, and else blocks. You’ll explore the try-finally clause, discover Python’s standard exceptions, and understand how to raise exceptions and create user-defined ones.

  • What is Exception?
  • Handling an exception
  • tryโ€ฆ.exceptโ€ฆelse
  • try-finally clause
  • Argument of an Exception
  • Python Standard Exceptions
  • Raising an exceptions
  • User-Defined Exceptions

Python Regular Expressions

In this module, you’ll learn the fundamentals of Python regular expressions, including what they are and how to use them effectively. You’ll explore the match and search functions, grasping the differences between matching and searching patterns. Additionally, you’ll discover how to perform search and replace operations, as well as delve into extended regular expressions and wildcards for more advanced text manipulation.

  • What are regular expressions?
  • The match Function and the Search Function
  • Matching vs Searching
  • Search and Replace
  • Extended Regular Expressions and Wildcard

Useful Additions

In this module of the Data Scientist Course Syllabus, you’ll discover the power of collections like named tuples and default dictionaries, which streamline your data management and enhance code readability. You’ll also master debugging techniques and breakpoints to efficiently troubleshoot your programs. Plus, you’ll learn how to leverage integrated development environments (IDEs) to boost your productivity and streamline your workflow.

  • Collections โ€“ named tuples, default dicts
  • Debugging and breakpoints, Using IDEs

Data Manipulation using Python

In this module of the Syllabus for Data Science Course atย FITA Academy, you’ll learn to manipulate data using Python, covering various data types and extraction methods. You’ll manage raw and processed data, perform data wrangling, and explore statistical concepts like mean, median, and standard deviation. Additionally, you’ll delve into exploratory data analysis (EDA) and utilize libraries like NumPy, SciPy, and Pandas to enhance your data skills.

Understanding Machine Learning Modelsย 

  • Understand what is a Machine Learning Model
  • Various Machine Learning Models
  • Choosing the Right Model
  • Training and Evaluating the Model
  • Improving the Performance of the Model

More on Modelsย 

  • Understanding Predictive Model
  • Working with Linear Regression
  • Working with Polynomial Regression
  • Understanding Multi Level Models
  • Selecting the Right Model or Model Selection
  • Need for selecting the Right Model
  • Understanding Algorithm Boosting
  • Various Types of Algorithm Boosting
  • Understanding Adaptive Boosting

Understanding Machine Learning Algorithmsย 

  • Understanding the Machine Learning Algorithms
  • Importance of Algorithms in Machine Learning
  • Exploring different types of Machine Learning Algorithms
    • Supervised Learning
    • Unsupervised Learning
    • Reinforcement Learning

Exploring Supervised Learning Algorithmsย 

  • Understanding the Supervised Learning Algorithm
  • Understanding Classifications
  • Working with different types of Classifications
  • Learning and Implementing Classifications
    • Logistic Regression
    • Naรฏve Bayes Classifier
    • Nearest Neighbour
    • Support Vector Machines (SVM)
    • Decision Trees
    • Boosted Trees
    • Random Forest
  • Time Series Analysis (TSA)
    • Understanding Time Series Analysis
    • Advantages of using TSA
    • Understanding various components of TSA
    • AR and MA Models
    • Understanding Stationarity
    • Implementing Forecasting using TSA

Exploring Un-Supervised Learning Algorithmsย 

  • Understanding Unsupervised Learning
  • Understanding Clustering and its uses
  • Exploring K-means
    • What is K-means Clustering
    • How K-means Clustering Algorithm Works
    • Implementing K-means Clustering
  • Exploring Hierarchical Clustering
    • Understanding Hierarchical Clustering
    • Implementing Hierarchical Clustering
  • Understanding Dimensionality Reduction
    • Importance of Dimensions
    • Purpose and advantages of Dimensionality Reduction
    • Understanding Principal Component Analysis (PCA)
    • Understanding Linear Discriminant Analysis (LDA)

Understanding Hypothesis Testingย 

  • What is Hypothesis Testing in Machine Learning
  • Advantages of using Hypothesis Testing
  • Basics of Hypothesis
    • Normalization
    • Standard Normalization
  • Parameters of Hypothesis Testing
    • Null Hypothesis
    • Alternative Hypothesis
  • The P-Value
  • Types of Tests
    • T Test
    • Z Test
    • ANOVA Test
    • Chi-Square Test

Overview Reinforcement Learning Algorithm

  • Understanding Reinforcement Learning Algorithm
  • Advantages of Reinforcement Learning Algorithm
  • Components of Reinforcement Learning Algorithm
  • Exploration Vs Exploitation tradeoff
โ€œTo learn more, consider joining the Data Science Course in Coimbatoreโ€



Recent Post:


Quick Enquiry

Please wait while submission in progress...


Contact Us

Chennai, Bangalore & Online

  93450 45466

Coimbatore

 95978 88270

Tirupur

99401 22502

Madurai

97900 94102

Pondicherry

93635 21112

For Hiring

 93840 47472
 hr@fita.in

Corporate Training

 90036 23340


FITA Academy Branches

Chennai

FITA Academy - Velachery
Plot No 7, 2nd floor,
Vadivelan Nagar,
Velachery Main Road,
Velachery, Chennai - 600042
Tamil Nadu

    :   93450 45466

FITA Academy - Anna Nagar
No 14, Block No, 338, 2nd Ave,
Anna Nagar,
Chennai 600 040, Tamil Nadu
Next to Santhosh Super Market

    :   93450 45466

FITA Academy - T Nagar
05, 5th Floor, Challa Mall,
T Nagar,
Chennai 600 017, Tamil Nadu
Opposite to Pondy Bazaar Globus

    :   93450 45466

FITA Academy - Tambaram
Nehru Nagar, Kadaperi,
GST Road, West Tambaram,
Chennai 600 045, Tamil Nadu
Opposite to Saravana Jewellers Near MEPZ

    :   93450 45466

FITA Academy - Thoraipakkam
5/350, Old Mahabalipuram Road,
Okkiyam Thoraipakkam,
Chennai 600 097, Tamil Nadu
Next to Cognizant Thoraipakkam Office
& Opposite to Nilgris Supermarket

    :   93450 45466

FITA Academy - Porur
17, Trunk Rd,
Porur
Chennai 600116, Tamil Nadu
Above Maharashtra Bank

    :   93450 45466

FITA Academy - Pallikaranai
335A, 13th Main Rd,
Ram Nagar South Extn,
Pallikaranai, Chennai,
Tamil Nadu 600100

    :   93450 45466

Bangalore

FITA Academy Marathahalli
No 7, J J Complex,
ITPB Road, Aswath Nagar,
Marathahalli Post,
Bengaluru 560037

    :   93450 45466

Coimbatore

FITA Academy - Saravanampatty
First Floor, Promenade Tower,
171/2A, Sathy Road, Saravanampatty,
Coimbatore - 641035
Tamil Nadu

    :   95978 88270

FITA Academy - Singanallur
348/1, Kamaraj Road,
Varadharajapuram, Singanallur,
Coimbatore - 641015
Tamil Nadu

    :   95978 88270

Other Locations

FITA Academy - Madurai
No.2A, Sivanandha salai,
Arapalayam Cross Road,
Ponnagaram Colony,
Madurai - 625016, Tamil Nadu

    :   97900 94102

FITA Academy - Pondicherry
410, Villianur Main Rd,
Sithananda Nagar, Nellitope,
Puducherry - 605005
Near IG Square

    :   93635 21112

FITA Academy - Tiruppur
61D, Poongodi Towers 2nd floor,
Periyar Colony Bus Stop,
Tirupur - 641 652

    :   9940122502

Read More Read less
  • Are You Located in Any of these Areas

    Adyar, Adambakkam, Anna Salai, Ambattur, Ashok Nagar, Aminjikarai, Anna Nagar, Besant Nagar, Chromepet, Choolaimedu, Guindy, Egmore, K.K. Nagar, Kodambakkam, Koyambedu, Ekkattuthangal, Kilpauk, Meenambakkam, Medavakkam, Nandanam, Nungambakkam, Madipakkam, Teynampet, Nanganallur, Navalur, Mylapore, Pallavaram, Purasaiwakkam, OMR, Porur, Pallikaranai, Poonamallee, Perambur, Saidapet, Siruseri, St.Thomas Mount, Perungudi, T.Nagar, Sholinganallur, Triplicane, Thoraipakkam, Tambaram, Vadapalani, Valasaravakkam, Villivakkam, Thiruvanmiyur, West Mambalam, Velachery and Virugambakkam.

    FITA Velachery or T Nagar or Thoraipakkam OMR or Anna Nagar or Tambaram or Porur branch is just few kilometre away from your location. If you need the best training in Chennai, driving a couple of extra kilometres is worth it!